q^2=10

Simple and best practice solution for q^2=10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for q^2=10 equation:



q^2=10
We move all terms to the left:
q^2-(10)=0
a = 1; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·1·(-10)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*1}=\frac{0-2\sqrt{10}}{2} =-\frac{2\sqrt{10}}{2} =-\sqrt{10} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*1}=\frac{0+2\sqrt{10}}{2} =\frac{2\sqrt{10}}{2} =\sqrt{10} $

See similar equations:

| .7Xx=3.75 | | 2+4x+9x+22=180 | | 14x-25=-12x+85 | | (x-20)+(2x-111)+((1/2)x+10)=180 | | 3x(9x+12)=180 | | x-20=x+10 | | q+q+q+q+q=q+6 | | 4m+12=-8+m | | k÷-8=2 | | -6=h/2-10 | | 39x+3+19x+3=180 | | 6x+44+-10x+65=89 | | 6.4x-2.3x=73,8 | | 34x12=104 | | 500+0.075x=0.1x | | (9/15)g=-(45/15) | | 1/3p-5=11 | | y=6y+24 | | 6x+x^2=114 | | 5n-7=4n-1 | | 500+7.5x=10x | | 4x2–25=0 | | (x+1)(x-1)=x-1 | | 4d+5/7=-9 | | 2x+15=6x+45 | | 60+12p=14(p+6)­10 | | 7/4u=50 | | -5(3x+1)=65 | | 6r-2(9-r)=22 | | -4(5x-7)-4x=-18-4x | | −3−13x=7 | | -36=-10c |

Equations solver categories